Banks Road Infant and Nursery School

"A Home for Learning, Laughing, Caring and Trying"

Mathematics Calculation Policy

June

The Aims of this Policy:

- To clearly outline the different models and images that can support teaching the four operations of addition, subtraction, multiplication and division.
- To provide an overview of skills linked to year groups to support consistency across school.
- To support the understanding of key language used to teach the four operations.

Intent

As Mathematicians our children will develop fluency in the fundamentals of Mathematics so they can enjoy problem solving and reasoning Mathematically with confidence and curiosity. Our staff deliver highly engaging Maths lessons that promote an enjoyment of Mathematics and nurture a confidence in children to 'have a go'. Our children become inquisitive, resilient Mathematicians that can apply their skills in a range of contexts and make connections between Mathematics and the world around them. We develop children's ability to articulate, discuss and explain their thinking using mathematical vocabulary. We enable children to develop Mastery in Maths, whilst ensuring all children achieve the appropriate age-related expectations.

Implementation

EYFS

Mathematics provision in EYFS is developed through purposeful, play based experiences and will be evident in the indoor and outdoor provision. Provision is engaging and age appropriate and designed with the children's interests at heart. Teachers plan from the New Early Years Curriculum with a key focus on "Number" and "Numerical Pattern" using material from White Rose Maths, Numberblocks and NCETM Mastering Number. Maths is taught in daily whole class sessions called "Maths Dollop's". Children who are identified as needing support are then taught one to one or in small groups by the class teacher.

KS1

We use the White Rose Maths Scheme to inform our planning and teaching of a Mastery Mathematics curriculum. We have invested in high quality CPD from the MathsHub to ensure our teaching staff are confident to plan and teach Mastery Mathematics lessons. Teachers can make carefully considered adaptions to meet the needs of their class while remaining consistent in their approach. They plan for clear progression of knowledge and skills using the small steps, lesson plans, PowerPoints and Worksheets from White Rose. Staff have a good understanding of the $\mathbf{5}$ Big Ideas in Teaching for Mastery which informs their decisions around planning and teaching.

Coherence	Representation \& Structure	Mathematical Thinking	Fluency	Variation
Lessons are broken down into small connected steps that gradually unfold the concept, providing access for all children that enables them to apply the concept in a range of contexts.	Representations used in lessons expose the mathematical relationships and structure being taught.	Ideas are worked on by the children: thought about, reasoned and discussed with talking partners.	We promote quick and efficient recall of facts and procedures and the flexibility to move between different contexts \& representations.	We aim to represent the concept being taught in more than one way. We encourage children to pay attention to what is kept the same and what changes.

We use 'Ready (Red), Steady (Amber), Go (Green) challenges on our adapted worksheets to challenge all children and to support the concrete, pictorial, abstract process. We use 'Blue' challenges to challenge children at 'Mastery with Greater Depth'.

Mastering Number is used as a whole class intervention of 15 minutes daily additional Fluency practice in KS1. It is used by Reception teachers to inform planning and ensure consistency from EYFS to Year 1 .
Flash Back 4 is used to revisit learning from the previous lesson, the previous week and the previous unit- sticky knowledge.
The concrete, pictorial, abstract approach is central to our planning and teaching with carefully selected manipulatives and representations (in line with our scheme and calculation policy) being chosen to deepen understanding.

- Fluency in their recall of key number facts and procedures
- Accuracy in the formal calculation methods for all four operations
- The flexibility and fluidity to move between different contexts and representations of mathematics.
- The ability to recognise relationships and make connections in mathematics
- The confidence and resilience to reason mathematically and solve a range of problems.

Assessment

1) Informal, formative assessments are made continually by questioning the children, observing and monitoring their work. These short-term assessments are closely related to the learning objectives for the lesson and help inform next steps.
2) We use White Rose Maths end of Unit assessments to check progress and understanding of content covered. These are stuck in the back of Maths books.
3) Sticky Knowledge assessments daily
4) Statutory Assessment Tests (SATs) are used for children in Year 2.
5) Tracking systems are in place to closely monitor and record children's progress throughout school. These are shared at whole school pupil progress meetings and support our analysis of gaps in learning, those children working at Greater Depth and those children who are at risk of falling behind.

SEND

SEND children work through the same lesson content and worksheets with scaffolding such as, quality first teaching, additional adult targeted support, carefully chosen manipulatives and visual aids (number lines etc.).

Addition

Skill: Add 1-digit and 2-digit numbers to 100												Year: 2/3
												When adding single digits to a two-digit number, children should be encouraged to count on from the larger number. They should also apply their knowledge of number bonds to add more efficiently e.g. $8+5=13$ so 38 $+5=43$. Hundred squares and straws can support children to find the number bond to 10 .

Glossary

Addend- A number to be added to another
Commutative- numbers can be added in any order
Partitioning- splitting a number into its component parts
Subitise- instantly recognise the number of objects in a small group without needing to count.

Sum- the result of an addition
Total- the sum found by addition
Add
Equals

Subtraction

Skill: Subtract 1 and 2-digit numbers to 20	Year: 1/2
	When subtracting one-digit numbers that cross 10, it is important to highlight the importance of ten ones equalling one ten. Children should be encouraged to find the number bond to 10 when partitioning the subtracted number. Ten frames, number shapes and number lines are particularly useful for this.

Glossary

Difference- the numerical difference between two numbers is found by comparing the quantity in each group

Inverse- the opposite of another operation e.g. subtraction is the inverse of addition

Subtract
Less
Equals- the same as

Multiplication

Glossary

Array- an ordered collection of counters, cubes or other item in rows and columns.

Column, row

Commutative- numbers can be multiplied in any order

Repeated Addition

Double

Odd
Even

Skill: Divide 2-digits by 1-digit (sharing with no exchange)		Year: $\mathbf{1 / 2}$
Tens	When dividing larger numbers, children can use manipulatives that allow them to partition into tens and ones. Straws, Base 10 and place value counters can all be used to share numbers into equal groups.	
Part-whole models		
can provide children		
with a clear written		
method that matches		
the concrete		
representation.		

Glossary

Dividend - the number that is to be divided
Divider- the number by which another is divided
Exchange- change a number or expression for another of an equivalent value
Remainder- the amount left over after a division when the divisor is not a factor of the dividend

Divide

Share

Halve

Times Tables

